
Evaligner: Automatic Prompt and Criteria Refinement from User
Feedback

Heechan Lee
heechan@kaist.ac.kr

School of Computing, KAIST
Daejeon, Republic of Korea

Tae Soo Kim
taesoo.kim@kaist.ac.kr

School of Computing, KAIST
Daejeon, Republic of Korea

Juho Kim
juhokim@kaist.ac.kr

School of Computing, KAIST
Daejeon, Republic of Korea

Abstract
During prompt engineering for Large Language Models (LLMs),
users and developers must iteratively evaluate whether generated
responses aligned with their intents and refine the prompt based
on the evaluations. Prior work has investigated using LLMs as eval-
uators to evaluate LLM responses with a criteria set that can reduce
developers’ burden of manual evaluation of multiple responses.
However, key challenges remain: (1) It is difficult to ensure that
the criteria set for LLM-as-a-Judge reflects the developer’s intent,
and (2) Developers still need to manually edit their prompts based
on the evaluation results. In this paper, we introduce Evaligner
(Evaluation aligner), a system that automatically refines both the
criteria set and prompt to align with the user’s intent. Evaligner
introduces a novel user-guided prompt engineering workflow that
augments minimal user feedback (i.e., select preferred outputs) by
refining criteria to align with this feedback, and then employing
the refined criteria to automatically evaluate outputs to identify
the prompt’s flaws and revise it accordingly. This workshop paper
presents Evaligner and its refinement pipelines, and discusses our
plans for future work.

Keywords
Human-AI Interaction, Large Language Models, Evaluation, Prompt
Engineering

1 Introduction
The advancement of Large Language Models (LLMs) has expanded
their applications across various domains. LLMs are widely used to
support everyday tasks such as searching and writing [9, 20, 24, 28],
as well as domain-specific applications like code generation, syn-
thetic data creation, and healthcare chatbots [13, 19, 34]. With the
increasing capabilities and accessibility of LLMs, a broad range of
users including lay people, researchers, and industry practitioners
are now engaging with LLMs not just as consumers but as devel-
opers: designing input prompts for these models to perform their
own target tasks. Developers should reflect their intentions (i.e.,
preferences, task goals, and requirements) in the input prompts
to ensure that the model outputs align with them. This process is
known as prompt engineering [17, 22].

In the process of prompt engineering, developers often encounter
challenges in writing prompts that perform their target tasks as
intended. Due to the black-box and non-deterministic nature of
LLMs, developers struggle to predict how changes to their prompts
will influence the generated outputs [16, 30]. To find a prompt that

2nd HEAL Workshop at CHI Conference on Human Factors in Computing Systems, Yoko-
hama, Japan
2025.

performs well for their tasks, developers test the current version of
the prompt with diverse querying inputs, evaluate the generated
responses to examine any mistakes or errors, and refine the prompt
accordingly [32, 33]. There are two key challenges in this process.
First, without automatic methods, developers frequently evaluate
responses manually, requiring substantial time and effort [11]. Sec-
ond, due to the stochastic nature of LLMs, determining how to
refine a prompt based on these evaluations is challenging, leading
to multiple iterations until an ”effective” prompt is found. These
issues underscore the need for automated methods and systematic
approaches to facilitate evaluation and effective prompt refinement.

Prior approaches, such as EvalLM, ChainForge, and EvaluLLM [1,
2, 11], have explored LLM-as-a-Judge [35], using LLMs to evaluate
responses based on the criteria provided by developers. LLM-as-a-
Judge can automate the evaluation process and reduce the burden
of manual evaluation on developers. However, developers must also
convey their criteria through separate prompts to the LLM that will
evaluate responses. To ensure that the criteria set accurately reflects
their intent, developers must continuously validate whether LLM
evaluations align with their intended criteria and refine the criteria
iteratively. Recent work proposed methods to automatically refine
evaluation criteria based on simple human feedback (i.e., binary
labels such as ”good” or ”bad”), ensuring better alignment with
human preferences [23]. However, in reality, the reason why LLM
and human evaluations do not align may not be fully captured by a
simple binary label, which makes it difficult for LLMs to identify the
specific aspect of the criteria set that should be revised to align with
the developer’s intent. In addition, these approaches focus only on
refining the evaluation criteria set and do not extend to improving
the actual generation prompts. Previous NLP work has addressed
automatic prompt optimization methods, using techniques such as
gradient descent optimization [18, 21], and LLMs [26], but interac-
tive systems for automatically editing prompt based on user intent
remain underexplored. Developers still need to manually edit their
prompts to better align with their intents.

In this paper, we propose Evaligner, a system that helps devel-
opers automatically refine a criteria set and prompts to align with
their intents by providing informative yet low-burden user feed-
back. Evaligner runs in two stages: 1) criteria refinement stage, and
2) prompt refinement stage. In the system, the user first provides
an evaluation criteria set and generation prompts. In the criteria re-
finement stage, the user manually evaluates a few responses while
the system also evaluates them in the background. If the user’s and
LLM’s evaluations misalign, the system requests the user to provide
short text feedback to clarify their intent. With this feedback, the
system automatically refines the criteria set to reflect the user’s
intent. In the prompt refinement stage, Evaligner uses the refined



2nd HEAL Workshop at CHI Conference on Human Factors in Computing Systems, April 26, 2025, Yokohama, Japan Heechan Lee, Tae Soo Kim, Juho Kim

criteria set to evaluate a larger set of responses. If a response re-
ceives a low score, the system suggests possible edits to the prompt
based on the evaluation result, which the user can then decide to
apply and revise. In this workshop paper, we present the design
goals, describe Evaligner, and discuss the limitations and future
work.

2 System
We propose Evaligner (Fig. 1, 2), a system designed to assist de-
velopers in refining evaluation criteria and prompts by automatic
refinement informed by user feedback. Evaligner enables users to
effectively refine the criteria set and prompt through a two-stage
process: criteria refinement stage and prompt refinement stage.
Users can define their evaluation criteria set that reflects their in-
tention in the criteria refinement stage. The prompt refinement
stage allows users to iteratively refine their prompt by evaluating
multiple responses based on the defined criteria set. We have also
implemented the pipelines to automate the refinement workflow
for the criteria and prompt.

2.1 Interface Walkthrough
2.1.1 Main and Baseline Prompt. Evaligner uses pairwise eval-
uation (i.e. evaluating prompts by comparing them against each
other) between the responses from two prompts, because both
humans and LLMs evaluate more easily and consistently when
comparing multiple responses rather than evaluating a single re-
sponse [3, 7, 14, 35]. After the user enters the system and uploads
sample input data, they are guided to write two versions of prompts
for pairwise evaluation. One is the Main Prompt; the other is the
Baseline Prompt. The system regards the Main Prompt as the one
that should be improved, while the Baseline Prompt serves as a
reference point for comparison. By comparing the responses gen-
erated from both prompts, the user can analyze how differences
between the prompts affect the output quality. For each prompt,
the user separately writes a system prompt and a user prompt. In
the user prompt, the user can use an {{input}} token which is
replaced with the sample input that the user uploaded.

2.1.2 Criteria Set. To automatically evaluate the LLM responses,
the user first needs to define a criteria set. Evaligner uses LLMs
as judge modules and the criteria set is provided during LLM eval-
uation. The user can either create a new criterion from scratch or
select one from the pre-defined criteria, a collection of criteria from
prior work to help bootstrap users [5, 12, 31, 36]. When creating a
new criterion, the user provides a name, description, an importance
level indicator, and sub-attributes. These details allow the user to
specify an evaluation criterion that aligns with their expectations.

To better capture importance differences and hierarchical rela-
tionships between user-defined evaluation criteria, we add two ele-
ments: the importance indicator and sub-attributes. The importance
indicator allows users to mark whether a criterion should be priori-
tized over others during evaluation. For example, when designing
prompts for a chatbot aimed at children, both the ”Insightfulness”
and ”Safety” of response may be important, but ”Safety” should be
prioritized to ensure children are not exposed to harmful content.
Sub-attributes represent more fine-grained aspects that contribute

to satisfying the criterion. Prior work has found that decompos-
ing broad criteria into more fine-grained rubrics can improve the
consistency of LLM evaluation [10, 15]. Inspired by this work and
pilot experiments, we adopted a design including sub-attributes
within each criterion. For instance, if the criterion is ”Factuality”,
its sub-attributes might include ”Correctness,” ”Completeness,” and
”Source Reliability.” A high factuality score would require all these
sub-attributes to be satisfied. However, defining sub-attributes for
each criterion may require significant effort from the user. To as-
sist in creating sub-attributes, the system provides a LLM-powered
sub-attributes creation feature based on the criterion’s name, de-
scription, and the user’s prompts for understanding the task of the
user.

2.1.3 Criteria Refinement Stage. To ensure the criteria set reflects
user intention, Evaligner allows users to compares their own
evaluations with the judge module’s evaluation. Inspired by Eval-
Gen [23], which collects simple binary feedback, the system instead
leverages more fine-grained user feedback to refine the criteria set,
ensuring that the evaluation criteria align more closely with the
user’s intention. After the user completes the criteria set and en-
ters the criterion refinement stage interface, the user can evaluate
responses from two prompts for one sample input. The judge mod-
ule also starts to evaluate in background. The LLM automatically
finds snippets in the response that are relevant to each criterion,
and the user can select a criterion to view the response from the
perspective of that criterion (Fig. 1E). These highlighted snippets
serve as evidence of what the LLM considered when making its
judgment, helping users interpret long-form responses more eas-
ily [2, 11]. They must choose one of three options: “Main Prompt
Win”, “Tie”, or “Baseline Prompt Win” by considering the overall
quality of the responses in relation to the criteria set (Fig. 1F). To
prevent the user from being influenced by the LLM evaluation, the
user cannot see the LLM evaluation result until they have made
their own selection [6]. Once the user selects the winner, they can
then review the details of the LLM evaluation, including how each
response was rated for each criterion, across the sub-attributes,
and the justification provided by the judge module. If there is a
misalignment between the user’s and judge module’s choice, the
user must provide feedback indicating which aspects of the LLM
evaluation are inconsistent with their intention (Fig. 1G). By asking
the user to provide a simple sentence of feedback, the system can
identify what criterion and what aspect of this criterion causes the
misalignment, without requiring the user to put excessive effort
into manually marking which criterion or sub-attribute caused the
misalignment.

While the user submits feedback and evaluates the next response,
the system refines the criteria set in the background with the pre-
vious misaligned evaluation and the user’s feedback. This design
allows users to stay focused on evaluating responses without syn-
chronously waiting for refinement. After the pipeline automatically
generates the criteria refinement suggestions, the user is alerted
about a possible suggestion (Fig. 1C).The user can review the details
of the criterion refinements suggested by the system. To ensure
transparency and controllability, we allow users to revise the AI
suggestions rather than applying them without explicit user ap-
proval. The user can either apply the suggestion as is or modify



Evaligner 2nd HEAL Workshop at CHI Conference on Human Factors in Computing Systems, April 26, 2025, Yokohama, Japan

A

Current Sample Input

C
Criteria Set


Refinement Alert

D

Generated Responses

from Each Prompt

F

User Evaluation

Aligned Misaligned

B
Main Prompt and

Baseline Prompt

E
Highlight Related

Snippet by Criterion

G

Figure 1: In the criteria refinement stage of Evaligner, the user can see the current sample input (A), and the Main and Baseline
Prompts (B). Generated responses from each prompt (D) are displayed at the center of the screen and the snippets related to the
selected criterion are highlighted (E) to support users to evaluate the responses. The user indicates their evaluation by three
buttons (F) and then the user can check LLM evaluation. If misaligned, the user must submit a simple feedback for criteria set
refinement (G). When refinement suggestions are generated, criteria set refinement alert is activated (C).

its details (i.e., name, description, importance, and sub-attributes)
before applying the changes. Further details about the criteria re-
finement pipeline are provided in Section 2.2.1. When the user feels
that the criteria set sufficiently reflects their intention, they can
proceed to the prompt refinement stage.

2.1.4 Prompt Refinement Stage. The goal of the prompt refinement
stage is to improve the prompt by testing it on a larger set of sample
inputs to evaluate the prompt across multiple sample inputs using
the refined criteria, allowing the user to explore more diverse ways
to refine their prompt. After the user decides the number of sample
inputs to evaluate (Fig 2A), the system starts to generate responses
for each prompt and evaluate the responses with the refined criteria
set. Evaluations are conducted in parallel, and when each evalu-
ation is finished, the user can review the results (Fig. 2D). Since
reviewing multiple evaluations individually can be overwhelming,
Evaligner provides a prompt analysis feature that summarizes the
results using a stacked bar chart (Fig. 2B). The chart is based on the
count of evaluations where Main, Baseline, or Tie was selected as

the winning prompt. This visualization helps users to quickly un-
derstand which prompt (i.e., Main or Baseline) is dominant across
evaluations or whether there are more ties.

To improve the Main Prompt, Evaligner identifies weaknesses
and make targeted refinements. For each sample where the Baseline
Prompt wins, the system starts to generate prompt refinement
suggestions in the background to improve the Main Prompt based
on the evaluation results. After the system generates any prompt
suggestion, user is alerted (Fig. 2C), allowing the user to review
the suggested refinements. Prompt refinements are applied at the
sentence level. This design was inspired by the common practice of
how prompt engineers iterate on prompts by making and testing
localized changes, instead of making large-scale changes at once [32,
33]. Also reviewing sentence-level suggestions rather than large-
scale modifications reduces the user’s burden by helping them
quickly understand the changes and predict the impact of changes
more easily. The suggestions fall into three categories: (1) Addition:
Adds a new sentence. (2) Modification: Suggests changes to an
existing sentence. (3) Deletion: Proposes the removal of an existing
sentence. The user can review multiple suggestions and decide
which ones to accept or reject (Fig. 2E). The user may also choose



2nd HEAL Workshop at CHI Conference on Human Factors in Computing Systems, April 26, 2025, Yokohama, Japan Heechan Lee, Tae Soo Kim, Juho Kim

A
Sample Input Loader

B

Prompt Analysis

C
Prompt Refinement


Suggestion Alert

D Evaluation Results

E Refinement Suggestions

Figure 2: In the prompt refinement stage, the user can load multiple sample inputs. Response generation and evaluation are
automatically performed when the user clicks the load button (A). The user can check the LLM evaluation for each sample input
at the criterion level (D). The prompt analysis (B) supports the user grasp the overall progress and evaluation result. When any
suggestion is generated, the user can click a prompt suggestion button (C) and revise refinement suggestions (E) in the modal.

to ignore all suggestions. More details on the prompt refinement
pipeline can be found in Section 2.2.2. After resolving the prompt
suggestions, the user can iterate the evaluation with the newly
refined version of Main Prompt.

Through these two refinement stages, Evaligner enables users
to systematically optimize both their evaluation criteria and prompt
design through an interactive and user-guided process. Users retain
control over AI-generated refinements, ensuring that changes align
with their intents and perform their tasks well. This structured
refinement process helps users iteratively build a well-calibrated
evaluation system and an effective prompt, ultimately enhancing
the overall quality of LLM-integrated applications.

2.2 Computational Pipelines
Evaligner features two automated pipelines: the Criteria Refine-
ment Pipeline and the Prompt Refinement Pipeline. These pipelines
leverage LLM-based refinement modules to iteratively improve
the criteria set and prompt based on evaluation results and user
feedback.

2.2.1 Criteria Refinement Pipeline (Fig. 3). Evaligner automati-
cally refines a criteria set based on the judge module’s evaluation,
the user’s evaluation, and the user’s natural language feedback.
The system provides an LLM-based refinement module. This mod-
ule takes a sample input, two responses, the current criteria set,
evaluation details, and user feedback as inputs. By processing the
misalignment between the evaluation of the user and the LLM, the
refinement module decides to either (1) create a new criterion or
(2) modify an existing criterion. The pipeline prompts the judge
module to evaluate the same sample input and two responses again
using the criteria set that is refined with the suggestions from the
refinement module. The pipeline repeats the refinement loop up to

three times until the LLM evaluation aligns with the user’s evalua-
tion to check whether the suggested criteria set runs as expected.

Criteria Refinement Stage

Generate

Refinement

Suggestions

Update

Select suggestion

to apply

Evaluate
No

Yes
Keep 
Evaluation or

Prompt 
Refinement 
Stage

Single Sample Input

LLM Eval Main Win

Main

Prompt

Main

Response

User Eval ?

Baseline 
Prompt

Baseline 
Response

Criteria Set
Judge Refine

Aligned?

User

Suggestion 1

(New Criterion)

Suggestion 2

(Modified Criterion)

Figure 3: In the criteria refinement stage, a judge module
with the criteria set evaluates two responses generated from
Main and Baseline Prompts and single sample input. If user
evaluation is aligned with LLM evaluation, the user can con-
tinue evaluating or proceed to the prompt refinement stage.
If not, a refinement module generates several refinement
suggestions and the user selects suggestions to update the
criteria set.



Evaligner 2nd HEAL Workshop at CHI Conference on Human Factors in Computing Systems, April 26, 2025, Yokohama, Japan

Figure 4: In the prompt refinement stage, Evaligner generates responses for multiple sample inputs. With the criteria set
defined in the criteria refinement stage, a judge module evaluates the responses. If there are evaluations where the baseline
wins, a refinement module suggests prompt refinements for the Main Prompt. The user can selectively apply the suggestions
and update the Main Prompt.

If alignment is not achieved after three iterations, the criteria set
from the third trial is presented to the user.

2.2.2 Prompt Refinement Pipeline (Fig. 4). To assist users to edit
their prompt to perform as they intend, Evaligner provides an
automatic prompt refinement pipeline. The system modifies the
user’s prompt at the sentence level, enabling iterative refinement
and continuous testing. The refinement module receives the user’s
prompt, broken down at the sentence level. While the prompt could
be decomposed using rule-based methods (e.g., splitting by periods),
we use an LLM-based approach to deal with various text formats
(e.g., JSON, Markdown) and unpredictable formats from user in-
put. After decomposition is complete, the pipeline provides the
refinement module with all the prompt sentences and LLM eval-
uation results. The refinement module applies only one of three
actions—Addition, Modification, or Deletion—to a single sentence.
By refining at the sentence level, the refinement module focuses
on making discrete significant changes, instead of multiple less
relevant changes. Therefore, the system suggests only the most
necessary refinements.

2.3 Implementation
Evaligner is implemented with the frontend frameworks ReactJS
and TypeScript. For all LLM components, we use the OpenAI API
and gpt 4o-2024-08-06. We set the temperature to 0.3 for evalua-
tion, 0.1 for the decomposition of the prompt, and 0.5 for all refine-
ment requests. Through several pilot tests, we found that prompt
decomposition performs better with a lower temperature, while
refinement benefits from a higher temperature to generate diverse
suggestions. All prompts use the Chain-of-Thoughts method [27],
and, for prompt for decomposition, few-shot examples were given.

3 Future Work
In this workshop paper, we introduce the Evaligner system, which
automatically refines the user’s criteria set based on user feedback

and improves users’ prompts to better align with the user’s criteria.
This project is still in progress, and we have not yet conducted user
studies. We are planning to conduct user studies to evaluate the
design decisions behind Evaligner and assess whether the system
effectively helps users align AI responses with their intended goals.

3.1 Appropriate Granularity Level for User
Evaluation

When Evalignermakes users evaluate responses and give feedback,
it is important to determine how detailed their feedback should
be. There is a trade-off in deciding the granularity level of user
evaluation in the evaluation process. If users provide feedback that
is too coarse-grained (i.e., simply selecting the better one between
two responses), LLMs may struggle to accurately infer the user’s
intention, potentially leading to misalignment over successive re-
finements. On the other hand, requiring users to give highly fine-
grained feedback (i.e., evaluating responses for every sub-attribute
in a criterion) increases users’ workload, which may lead to fatigue.
To balance this, Evaligner prompts users to provide unstructured
natural language feedback to clarify misalignment, instead of eval-
uating every sub-attribute individually, and only prompts users
when the LLM evaluation does not align with their evaluation. In
future user studies, we aim to evaluate whether our granularity
level design effectively reduces users’ workload while providing
sufficient guidance to align future LLM evaluations.

3.2 Support Reviewing Multiple Responses and
Evaluations

In the criteria refinement stage, users focus on evaluating a single
sample input. However, in the prompt refinement stage, responses
are generated and evaluated across multiple sample inputs, mak-
ing it difficult for users to manually check every response and
evaluation. Several prior work explored ways to support users to



2nd HEAL Workshop at CHI Conference on Human Factors in Computing Systems, April 26, 2025, Yokohama, Japan Heechan Lee, Tae Soo Kim, Juho Kim

understand a large number of text through techniques such as high-
lighting, clustering, and visualization [8, 25]. In Evaligner, we
assume that criteria have already been revised sufficiently where
the user does not have to validate them in prompt refinement. How-
ever, the criteria still might have flaws that users should or want
to check during prompt refinement. Through user studies, we plan
to understand users’ need to validate larger samples during the
prompt refinement stage and, if there is such a need, what aspects
users want to focus on. Based on this, we aim to explore techniques
to support users in understanding and effectively evaluating a large
number of LLM-generated responses.

3.3 Scope of Prompt Refinement
The current version of Evaligner refines prompts at the sentence
level. This design is based on common practices in prompt en-
gineering, where engineers iteratively make small changes in a
prompt and test the response from the new prompt [33]. Based on
this design rationale, we expect that sentence-level refinement will
help users better understand refinement suggestions by making
changes more manageable and easy to follow. However, prior work
has explored various prompt engineering techniques (e.g., ReAct
[29], few-shot prompting [4]), which suggest that modifying the
overall structure of a prompt could also be valuable for prompt
improvement. Through user studies, we will assess how sentence-
level refinements in the prompt refinement stage help users iterate
and improve on prompts. Beyond the current version of Evaligner,
we also plan to explore an approach that combines sentence-level
refinements with structural-level modifications (e.g., restructuring
prompts to apply explicit reasoning steps). Through future user
studies, we aim to evaluate which approach effectively helps users
to better align the prompts with their goals.

References
[1] Ian Arawjo, Chelse Swoopes, Priyan Vaithilingam, Martin Wattenberg, and

Elena L Glassman. 2024. ChainForge: A Visual Toolkit for Prompt Engineering
and LLM Hypothesis Testing. In Proceedings of the CHI Conference on Human
Factors in Computing Systems. 1–18.

[2] Zahra Ashktorab,Michael Desmond, Qian Pan, JamesM Johnson,Martin Santillan
Cooper, Elizabeth M Daly, Rahul Nair, Tejaswini Pedapati, Swapnaja Achintalwar,
and Werner Geyer. 2024. Aligning Human and LLM Judgments: Insights from
EvalAssist on Task-Specific Evaluations and AI-assisted Assessment Strategy
Preferences. arXiv preprint arXiv:2410.00873 (2024).

[3] Yushi Bai, Jiahao Ying, Yixin Cao, Xin Lv, Yuze He, Xiaozhi Wang, Jifan Yu,
Kaisheng Zeng, Yijia Xiao, Haozhe Lyu, et al. 2024. Benchmarking foundation
models with language-model-as-an-examiner. Advances in Neural Information
Processing Systems 36 (2024).

[4] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot learners. Advances in neural
information processing systems 33 (2020), 1877–1901.

[5] Alexander R. Fabbri, Wojciech Kryściński, Bryan McCann, Caiming Xiong,
Richard Socher, and Dragomir Radev. 2021. SummEval: Re-evaluating Summa-
rization Evaluation. arXiv:2007.12626 [cs.CL] https://arxiv.org/abs/2007.12626

[6] Krzysztof Z Gajos and Lena Mamykina. 2022. Do people engage cognitively with
AI? Impact of AI assistance on incidental learning. In Proceedings of the 27th
International Conference on Intelligent User Interfaces. 794–806.

[7] Sebastian Gehrmann, Elizabeth Clark, and Thibault Sellam. 2023. Repairing the
cracked foundation: A survey of obstacles in evaluation practices for generated
text. Journal of Artificial Intelligence Research 77 (2023), 103–166.

[8] Katy Ilonka Gero, Chelse Swoopes, Ziwei Gu, Jonathan K Kummerfeld, and
Elena L Glassman. 2024. Supporting Sensemaking of Large Language Model
Outputs at Scale. In Proceedings of the CHI Conference on Human Factors in
Computing Systems. 1–21.

[9] Daphne Ippolito, Ann Yuan, Andy Coenen, and Sehmon Burnam. 2022. Creative
writing with an ai-powered writing assistant: Perspectives from professional

writers. arXiv preprint arXiv:2211.05030 (2022).
[10] Seungone Kim, Jamin Shin, Yejin Cho, Joel Jang, Shayne Longpre, Hwaran Lee,

Sangdoo Yun, Seongjin Shin, Sungdong Kim, James Thorne, and Minjoon Seo.
2024. Prometheus: Inducing Fine-grained Evaluation Capability in Language
Models. arXiv:2310.08491 [cs.CL] https://arxiv.org/abs/2310.08491

[11] Tae Soo Kim, Yoonjoo Lee, Jamin Shin, Young-Ho Kim, and Juho Kim. 2024.
Evallm: Interactive evaluation of large language model prompts on user-defined
criteria. In Proceedings of the CHI Conference on Human Factors in Computing
Systems. 1–21.

[12] Kalpesh Krishna, Erin Bransom, Bailey Kuehl, Mohit Iyyer, Pradeep Dasigi,
Arman Cohan, and Kyle Lo. 2023. LongEval: Guidelines for Human Evalua-
tion of Faithfulness in Long-form Summarization. arXiv:2301.13298 [cs.CL]
https://arxiv.org/abs/2301.13298

[13] Bishal Lamichhane. 2023. Evaluation of chatgpt for nlp-based mental health
applications. arXiv preprint arXiv:2303.15727 (2023).

[14] Margaret Li, Jason Weston, and Stephen Roller. 2019. Acute-eval: Improved
dialogue evaluation with optimized questions and multi-turn comparisons. arXiv
preprint arXiv:1909.03087 (2019).

[15] Bill Yuchen Lin, Yuntian Deng, Khyathi Chandu, Faeze Brahman, Abhilasha
Ravichander, Valentina Pyatkin, Nouha Dziri, Ronan Le Bras, and Yejin Choi.
2024. WILDBENCH: Benchmarking LLMs with Challenging Tasks from Real
Users in the Wild. arXiv preprint arXiv:2406.04770 (2024).

[16] Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and
Weizhu Chen. 2021. What Makes Good In-Context Examples for GPT-3? arXiv
preprint arXiv:2101.06804 (2021).

[17] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and
Graham Neubig. 2023. Pre-train, prompt, and predict: A systematic survey of
prompting methods in natural language processing. Comput. Surveys 55, 9 (2023),
1–35.

[18] Yuanye Liu, Jiahang Xu, Li Lyna Zhang, Qi Chen, Xuan Feng, Yang Chen,
Zhongxin Guo, Yuqing Yang, and Peng Cheng. 2025. Beyond Prompt Content: En-
hancing LLM Performance via Content-Format Integrated Prompt Optimization.
arXiv:2502.04295 [cs.CL] https://arxiv.org/abs/2502.04295

[19] Yingzhou Lu, Minjie Shen, Huazheng Wang, Xiao Wang, Capucine van Rechem,
Tianfan Fu, andWenqi Wei. 2023. Machine learning for synthetic data generation:
a review. arXiv preprint arXiv:2302.04062 (2023).

[20] Vishakh Padmakumar and He He. 2023. Does Writing with Language Models
Reduce Content Diversity? arXiv preprint arXiv:2309.05196 (2023).

[21] Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chenguang Zhu, and Michael Zeng.
2023. Automatic Prompt Optimization with ”Gradient Descent” and Beam Search.
arXiv:2305.03495 [cs.CL] https://arxiv.org/abs/2305.03495

[22] Pranab Sahoo, Ayush Kumar Singh, Sriparna Saha, Vinija Jain, Samrat Mondal,
and Aman Chadha. 2024. A systematic survey of prompt engineering in large
language models: Techniques and applications. arXiv preprint arXiv:2402.07927
(2024).

[23] Shreya Shankar, JD Zamfirescu-Pereira, Björn Hartmann, Aditya Parameswaran,
and Ian Arawjo. 2024. Who validates the validators? aligning llm-assisted evalu-
ation of llm outputs with human preferences. In Proceedings of the 37th Annual
ACM Symposium on User Interface Software and Technology. 1–14.

[24] Nikhil Sharma, Q Vera Liao, and Ziang Xiao. 2024. Generative Echo Chamber?
Effect of LLM-Powered Search Systems on Diverse Information Seeking. In
Proceedings of the CHI Conference on Human Factors in Computing Systems. 1–17.

[25] Sangho Suh, Meng Chen, Bryan Min, Toby Jia-Jun Li, and Haijun Xia. 2024.
Luminate: Structured Generation and Exploration of Design Space with Large
LanguageModels for Human-AI Co-Creation. In Proceedings of the CHI Conference
on Human Factors in Computing Systems. 1–26.

[26] Ming Wang, Yuanzhong Liu, Xiaoyu Liang, Songlian Li, Yijie Huang, Xiaoming
Zhang, Sijia Shen, Chaofeng Guan, Daling Wang, Shi Feng, Huaiwen Zhang, Yifei
Zhang, Minghui Zheng, and Chi Zhang. 2024. LangGPT: Rethinking Structured
Reusable Prompt Design Framework for LLMs from the Programming Language.
arXiv:2402.16929 [cs.SE] https://arxiv.org/abs/2402.16929

[27] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning
in large language models. Advances in neural information processing systems 35
(2022), 24824–24837.

[28] Ryen W White. 2023. Navigating complex search tasks with AI copilots. arXiv
preprint arXiv:2311.01235 (2023).

[29] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan,
and Yuan Cao. 2022. React: Synergizing reasoning and acting in language models.
arXiv preprint arXiv:2210.03629 (2022).

[30] Qinyuan Ye, Maxamed Axmed, Reid Pryzant, and Fereshte Khani. 2023. Prompt
engineering a prompt engineer. arXiv preprint arXiv:2311.05661 (2023).

[31] Seonghyeon Ye, Doyoung Kim, Sungdong Kim, Hyeonbin Hwang, Seungone
Kim, Yongrae Jo, James Thorne, Juho Kim, and Minjoon Seo. 2024. FLASK:
Fine-grained Language Model Evaluation based on Alignment Skill Sets.
arXiv:2307.10928 [cs.CL] https://arxiv.org/abs/2307.10928

[32] JD Zamfirescu-Pereira, Heather Wei, Amy Xiao, Kitty Gu, Grace Jung, Matthew G
Lee, Bjoern Hartmann, and Qian Yang. 2023. Herding AI cats: Lessons from

https://arxiv.org/abs/2007.12626
https://arxiv.org/abs/2007.12626
https://arxiv.org/abs/2310.08491
https://arxiv.org/abs/2310.08491
https://arxiv.org/abs/2301.13298
https://arxiv.org/abs/2301.13298
https://arxiv.org/abs/2502.04295
https://arxiv.org/abs/2502.04295
https://arxiv.org/abs/2305.03495
https://arxiv.org/abs/2305.03495
https://arxiv.org/abs/2402.16929
https://arxiv.org/abs/2402.16929
https://arxiv.org/abs/2307.10928
https://arxiv.org/abs/2307.10928


Evaligner 2nd HEAL Workshop at CHI Conference on Human Factors in Computing Systems, April 26, 2025, Yokohama, Japan

designing a chatbot by promptingGPT-3. In Proceedings of the 2023 ACMDesigning
Interactive Systems Conference. 2206–2220.

[33] JD Zamfirescu-Pereira, Richmond Y Wong, Bjoern Hartmann, and Qian Yang.
2023. Why Johnny can’t prompt: how non-AI experts try (and fail) to design
LLM prompts. In Proceedings of the 2023 CHI Conference on Human Factors in
Computing Systems. 1–21.

[34] Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin. 2024. Codeagent: Enhancing
code generation with tool-integrated agent systems for real-world repo-level
coding challenges. arXiv preprint arXiv:2401.07339 (2024).

[35] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu,
Yonghao Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. 2024. Judging
llm-as-a-judge with mt-bench and chatbot arena. Advances in Neural Information
Processing Systems 36 (2024).

[36] Ming Zhong, Yang Liu, Da Yin, Yuning Mao, Yizhu Jiao, Pengfei Liu, Chenguang
Zhu, Heng Ji, and Jiawei Han. 2022. Towards a Unified Multi-Dimensional
Evaluator for Text Generation. arXiv:2210.07197 [cs.CL] https://arxiv.org/abs/
2210.07197

https://arxiv.org/abs/2210.07197
https://arxiv.org/abs/2210.07197
https://arxiv.org/abs/2210.07197

	Abstract
	1 Introduction
	2 System
	2.1 Interface Walkthrough
	2.2 Computational Pipelines
	2.3 Implementation

	3 Future Work
	3.1 Appropriate Granularity Level for User Evaluation
	3.2 Support Reviewing Multiple Responses and Evaluations
	3.3 Scope of Prompt Refinement

	References

